1. (16%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$
(b) $\sum_{n=1}^{\infty}\left(-\frac{1}{3}\right)^{n}\left(1+\frac{1}{n}\right)^{n^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{3 \cdot 5 \cdot 7 \cdot \ldots(2 n+1)}$
(d) $\sum_{n=1}^{\infty} \frac{\ln (n+2)}{n+2}$

Ans:

(a) $\lim _{n \rightarrow \infty} \frac{\tan \frac{1}{n}}{\frac{1}{n}}=1, \quad$ since $\frac{1}{n}$ is a p-series with $\mathrm{p} \leq 1$ which is divergent. Therefore, by the limit comparison test, $\sum_{n=1}^{\infty} \tan \frac{1}{n}$ diverges. In addition, since $\lim _{n \rightarrow \infty} \tan \frac{1}{n}=0$ and $\tan \frac{1}{n}$ is decreasing. Therefore, by the alternating series test $\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$ converges. All in all, $\sum_{n=1}^{\infty}(-1)^{n} \tan \frac{1}{n}$ is conditionally converges.
(b) Since $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}{3}=\frac{e}{3}<1$. By the root test, it is absolute converges.
(c) Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-2)^{n+1}}{3 \cdot 5 \cdot 7 \ldots . .(2 n+1)(2 n+3)} \cdot \frac{3 \cdot 5 \cdot 7 \ldots(2 n+1)}{(-2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{2}{2 n+3}=0$.

Therefore, by the ratio test, it is absolute converges
(d) Let $f(\mathrm{x})=\frac{\ln (x+2)}{x+2}, f^{\prime}(x)=\frac{1-\ln (x+2)}{(x+2)^{2}}<0$ for $\mathrm{x} \geq 1$. f is positive, continuous and decreasing for $\mathrm{x} \geq 1$

$$
\int_{1}^{\infty} \frac{\ln (x+2)}{x+2} d x=\left.\lim _{b \rightarrow \infty} \frac{[\ln (x+2)]^{2}}{2}\right|_{1} ^{b}=\infty
$$

So the series diverges by the integral test.
2. (12%) Find the interval of convergence of the power series (Be sure to check the for the convergence at the endpoints of the intervals)
(a) $\sum_{n=0}^{\infty} n$! $(x-2)^{n}$
(b) $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{3^{n}}$

Ans:

(a) $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x-2)^{n+1}}{n!(x-2)^{n}}\right|=\infty$ which implies that the series converges only at the center 2 .
(b) $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1} / 3^{n+1}}{(x-3)^{n} / 3^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x-3}{3}\right|$. By the ratio test, the series
converges for $\left|\frac{x-3}{3}\right|<1 \rightarrow 0<x<6$
Note that when $\mathrm{x}=0 \sum_{n=0}^{\infty} \frac{(x-3)^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{(-3)^{n}}{3^{n}}=\sum_{n=0}^{\infty}(-1)^{n}$ which is divergent by the n-th term test.
when $\mathrm{x}=6 \sum_{n=0}^{\infty} \frac{(x-3)^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{(3)^{n}}{3^{n}}=\sum_{n=0}^{\infty} 1$ which is divergent by the n-th term test. Therefore, the interval of convergence is $(0,6)$.
3. (12%) Let $\mathrm{F}(\mathrm{x})=\int_{0}^{x} \ln \left(1+\frac{t^{2}}{2}\right) d t$
(a) Find the Maclaurin series for $F(x)$ and its radius of convergence.
(b) Estimate $\mathrm{F}(0.1)$ with an error less than 10^{-4}

Ans:

(a) By the fundamental theorem of calculus, $F^{\prime}(x)=\ln \left(1+\frac{x^{2}}{2}\right)$. Notice that
$\ln \left(1+\frac{x^{2}}{2}\right)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\left(\frac{x^{2}}{2}\right)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x)^{2 n}}{2^{n} n}$
Term by term integration yields $\mathrm{F}(\mathrm{x})=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n+1}}{2^{n} n(2 n+1)}$
Using the ratio test $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} x^{2 n+3}}{2^{n+1}(n+1)(2 n+3)} \cdot \frac{2^{n} n(2 n+1)}{(-1)^{n-1} x^{2 n+1}}\right|=\left|\frac{x^{2}}{2}\right|$.
Therefore, when $\left|\frac{x^{2}}{2}\right|<1 \rightarrow|\mathrm{x}|<\sqrt{2}$ it is convergent. The radius of convergence is $\sqrt{2}$
(b) Let $b_{n}=\frac{\left(\frac{1}{10}\right)^{2 n+1}}{2^{n} n(2 n+1)}$

$$
\begin{gathered}
b_{1}=\frac{\left(\frac{1}{10}\right)^{3}}{2^{1} 1(2+1)}=\frac{1}{6000}=0.000167>10^{-4} \\
b_{2}=\frac{\left(\frac{1}{10}\right)^{5}}{2^{2} 2(4+1)}=\frac{1}{4000000}<10^{-4}
\end{gathered}
$$

Since it is an alternating series, therefore $F(0.1) \sim \frac{1}{6000}=0.00167$
4. (12%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$
(b) $\frac{\pi}{3}-\frac{\pi^{3}}{3^{3} \times 3!}+\frac{\pi^{5}}{3^{5} \times 5!}-\frac{\pi^{7}}{3^{7} \times 7!}+\ldots$
(c) $\lim _{x \rightarrow 0} \frac{\sin (x)-x+\frac{1}{6} x^{3}}{x^{5}}$

Ans:
(a) Since $\ln x=(\mathrm{x}-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}+\cdots+\frac{(-1)^{n-1}(x-1)^{n}}{n}+\cdots, 0<\mathrm{x} \leq 2$

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=\ln 2
$$

(b) $\frac{\pi}{3}-\frac{\pi^{3}}{3^{3} \times 3!}+\frac{\pi^{5}}{3^{5} \times 5!}-\frac{\pi^{7}}{3^{7} \times 7!}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{\pi}{3}\right)^{2 n+1}}{(2 n+1)!}=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
(c) $\lim _{x \rightarrow 0} \frac{\sin (x)-x+\frac{1}{6} x^{3}}{x^{5}}=\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \frac{x^{7}}{7!}+\cdots\right)-x+\frac{1}{6} x^{3}}{x^{5}}=\lim _{x \rightarrow 0} \frac{\left(\frac{x^{5}}{5!} \frac{x^{7}}{7!}+\cdots\right)}{x^{5}}=\frac{1}{5!}=\frac{1}{120}$
5. (10\%) Find the first two nonzero terms of Taylor series of $f(x)=\csc (x)$ center at $\frac{\pi}{2}$

Ans:

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\csc (\mathrm{x}) \\
f^{\prime}(\mathrm{x})=-\csc (\mathrm{x}) \cot (x) \\
f^{\prime \prime}(\mathrm{x})=\csc ^{3}(\mathrm{x})+\csc (x) \cot ^{2}(x) \\
\csc (\mathrm{x})=1+\frac{1}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\cdots
\end{gathered}
$$

6. (10\%) The following figure shows the polar graph of $r=e^{\frac{\theta}{6}}$ where $-2 \pi \leq \theta \leq$ 2π. Find the area of the shaded region

Ans:

$$
\begin{aligned}
\mathrm{A}=\frac{1}{2} \int_{0}^{2 \pi}\left(e^{\frac{\theta}{6}}\right)^{2} d \theta-\frac{1}{2} \int_{-2 \pi}^{0}\left(e^{\frac{\theta}{6}}\right)^{2} d \theta & =\frac{1}{2} \int_{0}^{2 \pi} e^{\frac{\theta}{3}} d \theta-\frac{1}{2} \int_{-2 \pi}^{0} e^{\frac{\theta}{3}} d \theta \\
=\left.\frac{3}{2} e^{\frac{\theta}{3}}\right|_{0} ^{2 \pi}-\left.\frac{3}{2} e^{\frac{\theta}{3}}\right|_{-2 \pi} ^{0} & =\frac{3}{2}\left[e^{\frac{2 \pi}{3}}+e^{\frac{-2 \pi}{3}}-2\right]
\end{aligned}
$$

7. (10%) Find the area of the surface formed by revolving the polar graph $r=$ $2 \sin (\theta)$ about the polar axis over the interval $0 \leq \theta \leq \pi$
Ans:

$$
\begin{gathered}
r=2 \sin (\theta) \\
\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=\sqrt{4 \sin ^{2} \theta+4 \cos ^{2} \theta}=2 \\
S=2 \pi \int_{0}^{\pi} 2 \sin (\theta) \sin \theta 2 d \theta=8 \pi \int_{0}^{\pi} \frac{1-\cos (2 \theta)}{2}=4 \pi\left[\theta-\frac{\sin (2 \theta)}{2}\right] \pi \\
=4 \pi^{2}
\end{gathered}
$$

8．（ 9% ）Classify the following surface，if it is quadratic surface you should further classify it into six basic types of surface
（a） $16 x^{2}-y^{2}+16 z^{2}=4$
（b）$r=r^{2} \sin ^{2}(\theta)$（this representation is in cylindrical coordinates）
（c）$\rho=4 \csc (\Phi) \sec (\theta)$（this representation is in spherical coordinates）
Ans：
（a） $16 x^{2}-y^{2}+16 z^{2}=4 \rightarrow \frac{x^{2}}{\left(\frac{1}{2}\right)^{2}}-\frac{y^{2}}{(2)^{2}}+\frac{z^{2}}{\left(\frac{1}{2}\right)^{2}}=1$
It is Hyperboloid of one sheet
（b） $\mathrm{r}=r^{2} \sin ^{2}(\theta) \rightarrow r=0$ or $r=\csc ^{2} \theta$ which is not a graph that we have cover in the class（此題送分）
（c）$\rho=4 \csc (\Phi) \sec (\theta)=\frac{4}{\sin (\Phi) \cos (\theta)} \rightarrow x=\rho \sin (\Phi) \cos (\theta)=4$ which is a plane

9．（ 9% ）Evaluate the following expression
（a） $\lim _{t \rightarrow 0} \sqrt{t+1} \boldsymbol{i}+(3 t+2) \boldsymbol{j}+\frac{1-\cos (t)}{t} \boldsymbol{k}$
（b）Let $\mathbf{r}(\mathrm{t})=\sin (\mathrm{t}) \mathbf{i}+\cos (\mathrm{t}) \mathbf{j}+\mathrm{t} \boldsymbol{k}, \mathbf{u}(\mathrm{t})=\sin (\mathrm{t}) \mathbf{i}+\cos (\mathrm{t}) \mathbf{j}+\frac{1}{t} \boldsymbol{k}$ ，find $\frac{d}{d t}[\boldsymbol{r}(t) \cdot \boldsymbol{u}(t)]$（Note that \cdot denotes inner－product）
（c） $\int 6 \boldsymbol{i}-2 t \boldsymbol{j}+\ln (t) \boldsymbol{k} d t$

Ans：

（a） $\lim _{t \rightarrow 0} \sqrt{t+1} \boldsymbol{i}+(3 t+2) \boldsymbol{j}+\frac{1-\cos (t)}{t} \boldsymbol{k}=\boldsymbol{i}+2 \boldsymbol{j}$ since $\lim _{t \rightarrow 0} \frac{1-\cos (t)}{t}=$

$$
\lim _{t \rightarrow 0} \frac{\sin (t)}{1}=0
$$

（b） $\boldsymbol{r}(t) \cdot \boldsymbol{u}(t)=1+1=2, \frac{d}{d t}[\boldsymbol{r}(t) \cdot \boldsymbol{u}(t)]=0$
（c） $\int 6 \boldsymbol{i}-2 t \boldsymbol{j}+\ln (t) \boldsymbol{k} d t=6 \mathrm{ti}-\mathrm{t}^{2} \boldsymbol{j}+(\mathrm{t} \ln t-\mathrm{t}) \boldsymbol{k}+\boldsymbol{C}$

